Critical Transitions in Early Embryonic Aortic Arch Patterning and Hemodynamics

نویسندگان

  • William J. Kowalski
  • Onur Dur
  • Yajuan Wang
  • Michael J. Patrick
  • Joseph P. Tinney
  • Bradley B. Keller
  • Kerem Pekkan
چکیده

Transformation from the bilaterally symmetric embryonic aortic arches to the mature great vessels is a complex morphogenetic process, requiring both vasculogenic and angiogenic mechanisms. Early aortic arch development occurs simultaneously with rapid changes in pulsatile blood flow, ventricular function, and downstream impedance in both invertebrate and vertebrate species. These dynamic biomechanical environmental landscapes provide critical epigenetic cues for vascular growth and remodeling. In our previous work, we examined hemodynamic loading and aortic arch growth in the chick embryo at Hamburger-Hamilton stages 18 and 24. We provided the first quantitative correlation between wall shear stress (WSS) and aortic arch diameter in the developing embryo, and observed that these two stages contained different aortic arch patterns with no inter-embryo variation. In the present study, we investigate these biomechanical events in the intermediate stage 21 to determine insights into this critical transition. We performed fluorescent dye microinjections to identify aortic arch patterns and measured diameters using both injection recordings and high-resolution optical coherence tomography. Flow and WSS were quantified with 3D computational fluid dynamics (CFD). Dye injections revealed that the transition in aortic arch pattern is not a uniform process and multiple configurations were documented at stage 21. CFD analysis showed that WSS is substantially elevated compared to both the previous (stage 18) and subsequent (stage 24) developmental time-points. These results demonstrate that acute increases in WSS are followed by a period of vascular remodeling to restore normative hemodynamic loading. Fluctuations in blood flow are one possible mechanism that impacts the timing of events such as aortic arch regression and generation, leading to the variable configurations at stage 21. Aortic arch variations noted during normal rapid vascular remodeling at stage 21 identify a temporal window of increased vulnerability to aberrant aortic arch morphogenesis with the potential for profound effects on subsequent cardiovascular morphogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational hemodynamic optimization predicts dominant aortic arch selection is driven by embryonic outflow tract orientation in the chick embryo.

In the early embryo, a series of symmetric, paired vessels, the aortic arches, surround the foregut and distribute cardiac output to the growing embryo and fetus. During embryonic development, the arch vessels undergo large-scale asymmetric morphogenesis to form species-specific adult great vessel patterns. These transformations occur within a dynamic biomechanical environment, which can play a...

متن کامل

Growth and hemodynamics after early embryonic aortic arch occlusion.

The majority of severe clinically significant forms of congenital heart disease (CHD) are associated with great artery lesions, including hypoplastic, double, right or interrupted aortic arch morphologies. While fetal and neonatal interventions are advancing, their potential ability to restore cardiac function, optimal timing, location, and intensity required for intervention remain largely unk...

متن کامل

Pharyngeal arch patterning in the absence of neural crest

Pharyngeal arches are a prominent and critical feature of the developing vertebrate head. They constitute a series of bulges within which musculature and skeletal elements form; importantly, these tissues derive from different embryonic cell types [1]. Numerous studies have emphasised the role of the cranial neural crest, from which the skeletal components derive, in patterning the pharyngeal a...

متن کامل

Left Right Patterning, Evolution and Cardiac Development

Many aspects of heart development are determined by the left right axis and as a result several congenital diseases have their origins in aberrant left-right patterning. Establishment of this axis occurs early in embryogenesis before formation of the linear heart tube yet impacts upon much later morphogenetic events. In this review I discuss the differing mechanisms by which left-right polarity...

متن کامل

Recovery from arterial growth delay reduces penetrance of cardiovascular defects in mice deleted for the DiGeorge syndrome region.

Chromosome 22q11.2 heterozygous deletions cause the most common deletion syndrome, including the DiGeorge syndrome phenotype. Using a mouse model of this deletion (named Df1) we show that the aortic arch patterning defects that occur in heterozygously deleted mice (Df1/+) are associated with a differentiation impairment of vascular smooth muscle in the 4th pharyngeal arch arteries (PAAs) during...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013